Amenability, Hyperrniteness and Isoperimetric Inequalities

نویسنده

  • Vadim A. KAIMANOVICH
چکیده

We formulate two new criteria of amenability of discrete equivalence relations: in terms of asymptotically invariant families of leafwise probability measures and in terms of isoperimetric properties of leafwise graph structures. These criteria lead to a geometric proof of the Connes{Feldman{Weiss theorem on coincidence of amenability and hyperrniteness for equivalence relations. Nous consid erons les relations d' equivalence discr etes R sur les espaces mesurables de Lebesgue (X;). Les relations d' equivalence les plus simples sont celles a classes nies. Une relation d' equivalence (X; ; R) s'appelle hyperrnie s'il existe une suite croissante de relations nies R n telle que R = S R n. D'autre part, on dit que la relation d' equivalence (X; ; R) est moyennable s'il est possible d'associer mesurablement a-presque tout point x 2 X une moyenne p x sur la classe x] dans telle mani ere que p x = p y pour presque tout couple (x; y) 2 R. L'hyperrnitude imm ediatement implique la moyennabilit e; la r eciproque a et e d emontr ee par Connes{Feldman{Weiss 4]. Nous sugg erons une nouvelle approche du probl eme du rapport entre l'hyperrnitude et la moyennabilit e qui donne, en particulier, une nouvelle d emonstration du th eor eme de Connes{Feldman{Weiss. Cette approche s'appuie sur la caract erisation des relations d' equivalence moyennables dans les termes des familles de mesures de probabilit e asymp-totiquement invariantes sur les classes d' equivalence et dans les termes des propri et es isop erim etriques des relations d' equivalence graph ees (Th eor eme 1). Une structure de graphe sur une relation d' equivalence est donn ee par l'ensemble K R de ses ar^ etes. Soit x] K la classe de x munie de la structure K et @ K A A le bord d'un sous-ensemble A x] par rapport a la structure K. La structure K s'appelle born ee si les degr es des sommets des graphes x] K et les valeurs du cocycle de Radon{Nikodym D(x; y); (x; y) 2 K sont uniform ement born es. Rappelons qu'un Note pr esent ee par Alain Connes. 1 2 graphe ? est dit \FFlner" s'il existe une suite de sous-ensembles nis A n ? telle que j@A n j=jA n j ! 0. Nous donnons un exemple tr es simple d'une relation d' equivalence non-moyennable a mesure invariante nie dont presque chaque classe est \FFlner". Cet exemple utilise …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalence Relations with Amenable Leaves Need Not Be Amenable

There are two notions of amenability for discrete equivalence relations. The \global" amenability (which is usually referred to just as \amenability") is the property of existence of leafwise invariant means, which, by a theorem of Connes{Feldman{Weiss, is equivalent to hyperrniteness, or, to being the orbit equivalence relation of a Z-action. The notion of \local" amenability applies to equiva...

متن کامل

Controlled coarse homology and isoperimetric inequalities

We study a coarse homology theory with prescribed growth conditions. For a finitely generated group G with the word length metric this homology theory turns out to be related to amenability of G. We characterize vanishing of a certain fundamental class in our homology in terms of an isoperimetric inequality on G and show that on any group at most linear control is needed for this class to vanis...

متن کامل

Amenability, Locally Finite Spaces, and Bi-lipschitz Embeddings

We define the isoperimetric constant for any locally finite metric space and we study the property of having isoperimetric constant equal to zero. This property, called Small Neighborhood property, clearly extends amenability to any locally finite space. Therefore, we start making a comparison between this property and other notions of amenability for locally finite metric spaces that have been...

متن کامل

2 00 8 Mean time exit and isoperimetric inequalities for minimal submanifolds of N × R

Based on Markvorsen and Palmer's work on mean time exit and isoperimetric inequalities we establish slightly better isoperimetric inequalities and mean time exit estimates for minimal submanifolds of N × R. We also prove isoperimetric inequalities for submanifolds of Hadamard spaces with tamed second fundamental form.

متن کامل

Bonnesen-style Wulff isoperimetric inequality

The Wulff isoperimetric inequality is a natural extension of the classical isoperimetric inequality (Green and Osher in Asian J. Math. 3:659-676 1999). In this paper, we establish some Bonnesen-style Wulff isoperimetric inequalities and reverse Bonnesen-style Wulff isoperimetric inequalities. Those inequalities obtained are extensions of known Bonnesen-style inequalities and reverse Bonnesen-st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997